Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70. https://doi.org/10.1016/j.cell.2012.01.035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30. https://doi.org/10.1038/nature11550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7. https://doi.org/10.1126/science.1223813.
Article
CAS
PubMed
Google Scholar
Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. 2019;129(10):4050–7. https://doi.org/10.1172/JCI129194.
Article
PubMed
PubMed Central
Google Scholar
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell. 2016;167:1469–80.e12. https://doi.org/10.1016/j.cell.2016.11.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167(4):915–32. https://doi.org/10.1016/j.cell.2016.10.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94. https://doi.org/10.1016/j.bbi.2015.03.016.
Article
PubMed
Google Scholar
Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. https://doi.org/10.1371/journal.pone.0137429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB, Waubant E. The gut microbiome in human neurological disease: a review. Ann Neurol. 2017;81(3):369–82. https://doi.org/10.1002/ana.24901.
Article
PubMed
Google Scholar
Zipfel S, Löwe B, Reas DL, Deter HC, Herzog W. Long-term prognosis in anorexia nervosa: lessons from a 21-year follow-up study. Lancet. 2000;355(9205):721–2. https://doi.org/10.1016/S0140-6736(99)05363-5.
Article
CAS
PubMed
Google Scholar
Zipfel S, Giel KE, Bulik CM, Hay P, Schmidt U. Anorexia nervosa: aetiology, assessment, and treatment. Lancet Psychiatry. 2015;2(12):1099–111. https://doi.org/10.1016/S2215-0366(15)00356-9.
Article
PubMed
Google Scholar
Treasure J, Claudino AM, Zucker N. Eating disorders. Lancet. 2010;375(9714):583–93. https://doi.org/10.1016/S0140-6736(09)61748-7.
Article
PubMed
Google Scholar
Fairburn CG, Harrison PJ. Eating disorders. Lancet. 2003;361(9355):407–16. https://doi.org/10.1016/S0140-6736(03)12378-1.
Article
PubMed
Google Scholar
Fairburn CG, Cooper Z, Doll HA, Welch SL. Risk factors for anorexia nervosa: three integrated case-control comparisons. Arch Gen Psychiatry. 1999;56(5):468–76. https://doi.org/10.1001/archpsyc.56.5.468.
Article
CAS
PubMed
Google Scholar
Couzin-Frankel J. Rethinking anorexia: challenging long-standing theories about the eating disorder, new research suggests biology is a powerful driver. Science. 2020;368(6487):124–7. https://doi.org/10.1126/science.368.6487.124.
Article
CAS
PubMed
Google Scholar
Schorr M, Miller KK. The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocrinol. 2017;13(3):174–86. https://doi.org/10.1038/nrendo.2016.175.
Article
CAS
PubMed
Google Scholar
Di Lodovico L, Mondot S, Doré J, Mack I, Hanachi M, Gorwood P. Anorexia nervosa and gut microbiota: a systematic review and quantitative synthesis of pooled microbiological data. Prog Neuro-Psychopharmacology Biol Psychiatry. 2021;106:110114. https://doi.org/10.1016/j.pnpbp.2020.110114.
Article
CAS
Google Scholar
Roubalová R, Procházková P, Papežová H, Smitka K, Bilej M, Tlaskalová-Hogenová H. Anorexia nervosa: gut microbiota-immune-brain interactions. Clin Nutr. 2020;39(3):676–84. https://doi.org/10.1016/j.clnu.2019.03.023.
Article
CAS
PubMed
Google Scholar
Moore PR, Evenson A. Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. J Biol Chem. 1946;165(2):437–41. https://doi.org/10.1016/S0021-9258(17)41154-9.
Article
CAS
PubMed
Google Scholar
Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci. 2005;84(4):634–43. https://doi.org/10.1093/ps/84.4.634.
Article
CAS
PubMed
Google Scholar
Coates M, Fuller R, Harrison G, Lev M, Suffolk S. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br J Nutr. 1963;17(1):141–50. https://doi.org/10.1079/BJN19630015.
Article
CAS
PubMed
Google Scholar
Brown K, Zaytsoff SJM, Uwiera RRE, Inglis GD. Antimicrobial growth promoters modulate host responses in mice with a defined intestinal microbiota. Sci Rep. 2016;6(1). https://doi.org/10.1038/srep38377.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. https://doi.org/10.1038/nature05414.
Article
PubMed
Google Scholar
Ley R, Turnbaugh P, Klein S, Gordon J. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3. https://doi.org/10.1038/nature4441021a.
Article
CAS
PubMed
Google Scholar
Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. https://doi.org/10.1126/science.1241214.
Article
CAS
PubMed
Google Scholar
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–99. https://doi.org/10.1016/j.cell.2014.09.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53(4):865–71. https://doi.org/10.1016/S0022-3999(02)00429-4.
Article
PubMed
Google Scholar
Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999;286(5442):1155–8. https://doi.org/10.1126/science.286.5442.1155.
Article
CAS
PubMed
Google Scholar
Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277(5332):1659–62. https://doi.org/10.1126/science.277.5332.1659.
Article
CAS
PubMed
Google Scholar
Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(1):263–75. https://doi.org/10.1113/jphysiol.2004.063388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenny B, DeVinney R, Stein M, Reinscheid D, Frey E, Finlay B. Enteropathogenic E. Coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 1997;91:511–520, 4, https://doi.org/10.1016/S0092-8674(00)80437-7.
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64. https://doi.org/10.1111/j.1365-2982.2010.01620.x.
Article
CAS
PubMed
Google Scholar
Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci. 2011;108(7):3047–52. https://doi.org/10.1073/pnas.1010529108.
Article
PubMed Central
Google Scholar
Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. Animal behavior and the microbiome. Science. 2012;338(6104):198–9. https://doi.org/10.1126/science.1227412.
Article
CAS
PubMed
Google Scholar
Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, et al. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil. 2013;25(6):521–8. https://doi.org/10.1111/nmo.12110.
Article
CAS
PubMed
Google Scholar
Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19(2):146–8. https://doi.org/10.1038/mp.2013.65.
Article
CAS
PubMed
Google Scholar
De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun. 2015;6(1):7735. https://doi.org/10.1038/ncomms8735.
Article
CAS
PubMed
Google Scholar
Walker J, Roberts SL, Halmi KA, Goldberg SC. Caloric requirements for weight gain in anorexia nervosa. Am J Clin Nutr. 1979;32(7):1396–400. https://doi.org/10.1093/ajcn/32.7.1396.
Article
CAS
PubMed
Google Scholar
Weltzin TE, Fernstrom MH, Hansen D, McConaha C, Kaye WH. Abnormal caloric requirements for weight maintenance in patients with anorexia and bulimia nervosa. Am J Psychiatry. 1991;148(12):1675–82. https://doi.org/10.1176/ajp.148.12.1675.
Article
CAS
PubMed
Google Scholar
Marzola E, Nasser JA, Hashim SA, Shih PB, Kaye WH. Nutritional rehabilitation in anorexia nervosa: review of the literature and implications for treatment. BMC Psychiatry. 2013;13(1):290. https://doi.org/10.1186/1471-244X-13-290.
Article
PubMed
PubMed Central
Google Scholar
Kaye WH, Gwirtsman HE, Obarzanek E, George DT. Relative importance of calorie intake needed to gain weight and level of physical activity in anorexia nervosa. Am J Clin Nutr. 1988;47(6):989–94. https://doi.org/10.1093/ajcn/47.6.989.
Article
CAS
PubMed
Google Scholar
Moukaddem M, Boulier A, Apfelbaum M, Rigaud D. Increase in diet-induced thermogenesis at the start of refeeding in severely malnourished anorexia nervosa patients. Am J Clin Nutr. 1997;66(1):133–40. https://doi.org/10.1093/ajcn/66.1.133.
Article
CAS
PubMed
Google Scholar
Keys A, Brožek J, Henschel A, Mickelsen O, Taylor HL. The biology of human starvation. Biol Hum Starvation. 1950;1 & 2.
Kalm LM, Semba RD. History of nutrition they starved so that others be better fed: remembering Ancel Keys and the Minnesota experiment. J Nutr. 2005;135(6):1347–52. https://doi.org/10.1093/jn/135.6.1347.
Article
CAS
PubMed
Google Scholar
Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009;4(9):e7125. https://doi.org/10.1371/journal.pone.0007125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kleiman SC, Watson HJ, Bulik-Sullivan EC, Huh EY, Tarantino LM, Bulik CM, et al. The intestinal microbiota in acute anorexia nervosa and during renourishment. Psychosom Med. 2015;77(9):969–81. https://doi.org/10.1097/PSY.0000000000000247.
Article
PubMed
PubMed Central
Google Scholar
Mack I, Cuntz U, Grämer C, Niedermaier S, Pohl C, Schwiertz A, et al. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci Rep. 2016;6(1):26752. https://doi.org/10.1038/srep26752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morita C, Tsuji H, Hata T, Gondo M, Takakura S, Kawai K, et al. Gut dysbiosis in patients with anorexia nervosa. PLoS One. 2015;10(12):e0145274. https://doi.org/10.1371/journal.pone.0145274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim G, Deepinder F, Morales W, Hwang L, Weitsman S, Chang C, et al. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci. 2012;57(12):3213–8. https://doi.org/10.1007/S10620-012-2197-1.
Article
CAS
PubMed
Google Scholar
Ghoshal U, Shukla R, Srivastava D, Ghoshal U. Irritable bowel syndrome, particularly the constipation-predominant form, involves an increase in Methanobrevibacter smithii, which is associated with higher methane production. Gut Liver. 2016;10(6):932–8. https://doi.org/10.5009/GNL15588.
Article
PubMed
PubMed Central
Google Scholar
Hata T, Miyata N, Takakura S, Yoshihara K, Asano Y, Kimura-Todani T, et al. The gut microbiome derived from anorexia nervosa patients impairs weight gain and behavioral performance in female mice. Endocrinology. 2019;160(10):2441–52. https://doi.org/10.1210/en.2019-00408.
Article
CAS
PubMed
Google Scholar
Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, et al. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes. 2013;37(11):1460–6. https://doi.org/10.1038/IJO.2013.20.
Article
CAS
Google Scholar
Borgo F, Riva A, Benetti A, Casiraghi MC, Bertelli S, Garbossa S, et al. Microbiota in anorexia nervosa: the triangle between bacterial species, metabolites and psychological tests. PLoS One. 2017;12(6):e0179739. https://doi.org/10.1371/journal.pone.0179739.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mörkl S, Lackner S, Müller W, Gorkiewicz G, Kashofer K, Oberascher A, et al. Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. Int J Eat Disord. 2017;50(12):1421–31. https://doi.org/10.1002/EAT.22801.
Article
PubMed
Google Scholar
Mörkl S, Lackner S, Meinitzer A, Mangge H, Lehofer M, Halwachs B, et al. Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. Eur J Nutr. 2018;57(8):2985–97. https://doi.org/10.1007/S00394-018-1784-0.
Article
PubMed
PubMed Central
Google Scholar
Hanachi M, Manichanh C, Schoenenberger A, Pascal V, Levenez F, Cournède N, et al. Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition: an explicative factor of functional intestinal disorders. Clin Nutr. 2019;38(5):2304–10. https://doi.org/10.1016/J.CLNU.2018.10.004.
Article
PubMed
Google Scholar
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of eating disorder-about the biological mechanisms behind the symptoms of anorexia nervosa. Nutrients. 2020;12(9):1–32. https://doi.org/10.3390/NU12092604.
Article
Google Scholar
Ishikawa E, Matsuki T, Kubota H, Makino H, Sakai T, Oishi K, et al. Ethnic diversity of gut microbiota: species characterization of Bacteroides fragilis group and genus Bifidobacterium in healthy Belgian adults, and comparison with data from Japanese subjects. J Biosci Bioeng. 2013;116(2):265–70. https://doi.org/10.1016/j.jbiosc.2013.02.010.
Article
CAS
PubMed
Google Scholar
Glenny EM, Fouladi F, Thomas SA, Bulik-Sullivan EC, Tang Q, Djukic Z, et al. Gut microbial communities from patients with anorexia nervosa do not influence body weight in recipient germ-free mice. Gut Microbes. 2021;13(1):1–15. https://doi.org/10.1080/19490976.2021.1897216.
Article
CAS
PubMed
Google Scholar
Miyata N, Hata T, Takakura S, Yoshihara K, Morita C, Mikami K, et al. Metabolomics profile of Japanese female patients with restricting-type anorexia nervosa. Physiol Behav. 2021;228:113204. https://doi.org/10.1016/j.physbeh.2020.113204.
Article
CAS
PubMed
Google Scholar
Kikuchi K, Itoh Y, Tateoka R, Ezawa A, Murakami K, Niwa T. Metabolomic search for uremic toxins as indicators of the effect of an oral sorbent AST-120 by liquid chromatography/tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(29):2997–3002. https://doi.org/10.1016/j.jchromb.2010.09.006.
Article
CAS
Google Scholar
Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem. 2012;403(7):1841–50. https://doi.org/10.1007/s00216-012-5929-3.
Article
CAS
PubMed
Google Scholar
Kikuchi M, Ueno M, Itoh Y, Suda W, Hattori M. Uremic toxin-producing gut microbiota in rats with chronic kidney disease. Nephron. 2017;135(1):51–60. https://doi.org/10.1159/000450619.
Article
CAS
PubMed
Google Scholar
Kurakawa T, Ogata K, Matsuda K, Tsuji H, Kubota H, Takada T, et al. Diversity of intestinal Clostridium coccoides group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PLoS One. 2015;10(5):e0126226. https://doi.org/10.1371/journal.pone.0126226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoyama MT, Tabori C, Miller ER, Hogberg MG. The effects of antibiotics in the weanling pig diet on growth and the excretion of volatile phenolic and aromatic bacterial metabolites. Am J Clin Nutr. 1982;35(6):1417–24. https://doi.org/10.1093/ajcn/35.6.1417.
Article
CAS
PubMed
Google Scholar
Altieri L, Neri C, Sacco R, Curatolo P, Benvenuto A, Muratori F, et al. Urinary p-cresol is elevated in small children with severe autism spectrum disorder. Biomarkers. 2011;16(3):252–60. https://doi.org/10.3109/1354750X.2010.548010.
Article
CAS
PubMed
Google Scholar
Gabriele S, Sacco R, Cerullo S, Neri C, Urbani A, Tripi G, et al. Urinary p-cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers. 2014;19(6):463–70. https://doi.org/10.3109/1354750X.2014.936911.
Article
CAS
PubMed
Google Scholar
Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol. 2013;36:82–90. https://doi.org/10.1016/j.ntt.2012.09.002.
Article
CAS
PubMed
Google Scholar
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. https://doi.org/10.1016/j.cell.2013.11.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaye WH, Barbarich NC, Putnam K, Gendall KA, Fernstrom J, Fernstrom M, et al. Anxiolytic effects of acute tryptophan depletion in anorexia nervosa. Int J Eat Disord. 2003;33(3):257–67. https://doi.org/10.1002/eat.10135.
Article
PubMed
Google Scholar
Kaye WH, Gwirtsman HE, George DT, Jimerson DC, Ebert MH. CSF 5-HIAA concentrations in anorexia nervosa: reduced values in underweight subjects normalize after weight gain. Biol Psychiatry. 1988;23(1):102–5. https://doi.org/10.1016/0006-3223(88)90113-8.
Article
CAS
PubMed
Google Scholar
Attia E, Wolk S, Cooper T, Glasofer D, Walsh BT. Plasma tryptophan during weight restoration in patients with anorexia nervosa. Biol Psychiatry. 2005;57(6):674–8. https://doi.org/10.1016/j.biopsych.2004.11.045.
Article
CAS
PubMed
Google Scholar
Schweiger U, Warnhoff M, Pahl J, Pirke KM. Effects of carbohydrate and protein meals on plasma large neutral amino acids, glucose, and insulin plasma levels of anorectic patients. Metabolism. 1986;35(10):938–43. https://doi.org/10.1016/0026-0495(86)90058-2.
Article
CAS
PubMed
Google Scholar
Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10(8):573–84. https://doi.org/10.1038/nrn2682.
Article
CAS
PubMed
Google Scholar
Klein DA, Mayer LES, Schebendach JE, Walsh BT. Physical activity and cortisol in anorexia nervosa. Psychoneuroendocrinology. 2007;32(5):539–47. https://doi.org/10.1016/j.psyneuen.2007.03.007.
Article
CAS
PubMed
Google Scholar
Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav. 2003;79(1):25–37. https://doi.org/10.1016/S0031-9384(03)00102-1.
Article
CAS
PubMed
Google Scholar
Scheurink AJW, Boersma GJ, Nergårdh R, Södersten P. Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav. 2010;100(5):490–5. https://doi.org/10.1016/j.physbeh.2010.03.016.
Article
CAS
PubMed
Google Scholar
Uchida S, Kitamoto A, Umeeda H, Nakagawa N, Masushige S, Kida S. Chronic reduction in dietary tryptophan leads to changes in the emotional response to stress in mice. J Nutr Sci Vitaminol. 2005;51(3):175–81. https://doi.org/10.3177/jnsv.51.175.
Article
CAS
PubMed
Google Scholar
Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients. 2019;11(8):1943. https://doi.org/10.3390/nu11081943.
Article
CAS
Google Scholar
Erny D, De Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77. https://doi.org/10.1038/nn.4030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura-Todani T, Hata T, Miyata N, Takakura S, Yoshihara K, Zhang XT, et al. Dietary delivery of acetate to the colon using acylated starches as a carrier exerts anxiolytic effects in mice. Physiol Behav. 2020;223:113004. https://doi.org/10.1016/j.physbeh.2020.113004.
Article
CAS
PubMed
Google Scholar
van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. J Physiol. 2018;596(20):4923–44. https://doi.org/10.1113/JP276431.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quigley E, Murray J, Pimentel M. AGA clinical practice update on small intestinal bacterial overgrowth: expert review. Gastroenterology. 2020;159(4):1526–32. https://doi.org/10.1053/J.GASTRO.2020.06.090.
Article
CAS
PubMed
Google Scholar
Singer D, Camargo SMR, Ramadan T, Schäfer M, Mariotta L, Herzog B, et al. Defective intestinal amino acid absorption in Ace2 null mice. Am J Physiol - Gastrointest Liver Physiol. 2012;303(6):G686–95. https://doi.org/10.1152/AJPGI.00140.2012.
Article
CAS
PubMed
Google Scholar
Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477–81. https://doi.org/10.1038/NATURE11228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsumoto M, Kunisawa A, Hattori T, Kawana S, Kitada Y, Tamada H, et al. Free D-amino acids produced by commensal bacteria in the colonic lumen. Sci Rep. 2018;8(1):17915. https://doi.org/10.1038/s41598-018-36244-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawase T, Nagasawa M, Ikeda H, Yasuo S, Koga Y, Furuse M. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br J Nutr. 2017;117(6):775–83. https://doi.org/10.1017/S0007114517000678.
Article
CAS
PubMed
Google Scholar
Mothet J, Parent A, Wolosker H, Brady R, Linden D, Ferris C, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A. 2000;97(9):4926–31. https://doi.org/10.1073/PNAS.97.9.4926.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey MT, Coe CL. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol. 1999;35:146–55. https://doi.org/10.1002/(SICI)1098-2302(199909)35:2<146::AID-DEV7>3.0.CO;2-G.
Holdeman LV, Good IJ, Moore WEC. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol. 1976;31(3):359–75. https://doi.org/10.1128/aem.31.3.359-375.1976.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brower DR. Auto-intoxication in its relations to the diseases of the nervous system. J Am Med Assoc. 1898;30(11):575–7. https://doi.org/10.1001/jama.1898.72440630001001.
Article
Google Scholar
Schmidt C. Mental health: thinking from the gut. Nature. 2015;518(7540):S12–5. https://doi.org/10.1038/518S13a.
Article
CAS
PubMed
Google Scholar
Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part I – autointoxication revisited. Gut Pathog. 2013;5(1):5. https://doi.org/10.1186/1757-4749-5-5.
Article
CAS
PubMed
PubMed Central
Google Scholar