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Abstract 

Background  Chronic Fatigue Syndrome patients suffer from symptoms that cannot be explained by a single under-
lying biological cause. It is sometimes claimed that these symptoms are a manifestation of a disrupted autonomic 
nervous system. Prior works studying this claim from the complex adaptive systems perspective, have observed 
a lower average complexity of physical activity patterns in chronic fatigue syndrome patients compared to healthy 
controls. To further study the robustness of such methods, we investigate the within-patient changes in complexity 
of activity over time. Furthermore, we explore how these changes might be related to changes in patient functioning.

Methods  We propose an extension of the allometric aggregation method, which characterises the complexity 
of a physiological signal by quantifying the evolution of its fractal dimension. We use it to investigate the temporal 
variations in within-patient complexity. To this end, physical activity patterns of 7 patients diagnosed with chronic 
fatigue syndrome were recorded over a period of 3 weeks. These recordings are accompanied by physicians’ judge-
ments in terms of the patients’ weekly functioning.

Results  We report significant within-patient variations in complexity over time. The obtained metrics are shown 
to depend on the range of timescales for which these are evaluated. We were unable to establish a consistent link 
between complexity and functioning on a week-by-week basis for the majority of the patients.

Conclusions  The considerable within-patient variations of the fractal dimension across scales and time force us 
to question the utility of previous studies that characterise long-term activity signals using a single static complexity 
metric. The complexity of a Chronic Fatigue Syndrome patient’s physical activity signal does not suffice to characterise 
their high-level functioning over time and has limited potential as an objective monitoring metric by itself.
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Background

The human body as a complex adaptive system
The traditional reductionist approach to Western medi-
cine focuses on specific biological causes of a disease, and 
goes on to treat these causes in order to alleviate symp-
toms [1]. This approach fails when the complex inter-
actions between many parts and mechanisms within 
the human body lie at the root of the illness, making it 
impossible to isolate a single failing part which can be 
treated. This seems to be the case for several chronic and 
functional syndromes such as Chronic Fatigue Syndrome 
(CFS) or fibromyalgia [2]. In this case, it might be more 
beneficial to take on a complex adaptive systems (CAS) 
perspective while studying such phenomena. This per-
spective treats the human body as being made up of sev-
eral components, constantly interacting with one another 
and reacting to external influences, allowing for com-
plex behaviour to emerge [3]. While all the components 
might act in a deterministic and linear fashion, the total 
behaviour of the system can be more than the sum of its 
parts. In this context, health can be seen as a complex 
system that arises from hierarchical network interactions 

between a person’s external environment and internal 
physiology, as stated by Sturmberg et al. [4].

The complexity and underlying dynamics of regula-
tory systems in the body can be quantified through the 
outputs they produce [5]. Physiological output signals, 
such as heart-rate variability (HRV) or activity patterns, 
exhibit a measure of self-similarity that is reflective of 
the complex feedback loops present in the system which 
created them [6]. This self-similarity can be measured 
through the amount of long-range correlations which 
are present in the signal. For example, current values of 
the heart-rate variability signal can be related to values 
which will arise in the distant future, since the emergent 
properties of the system allow small effects to carry large 
consequences [7]. Various methods have been developed 
to capture and quantify the strength of such correlations 
[6], including allometric aggregation [8], which we will 
address in detail in the Methods section. The hierarchical 
patterns that are formed through these long-range cor-
relations are fractal-like, meaning they repeat themselves 
across several timescales [9]. This is why the term “fractal 
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complexity” can be used to describe the strength of self-
similarity found in these signals.

Complexity analysis of these outputs has shown poten-
tial to capture changes in health status of individuals, 
both regarding specific syndromes and more general 
processes like ageing. For example, a decrease in long-
range correlations in the HRV signal (which can be 
interpreted as a decrease in complexity of the underly-
ing regulatory system) might indicate a patient at risk of 
cardiac arrest [10], and a decrease in fractal complexity 
of activity patterns can be related to mortality risk in 
(older) adults [11].

Chronic Fatigue Syndrome as a disruption of the CAS
The possibility to view a disease from a CAS point of 
view is especially welcome in  situations where the clas-
sical cause-effect view fails to explain the symptoms of 
a patient. This is the case for the Chronic Fatigue Syn-
drome, where it has continuously proven difficult to pin-
point a single pathophysiological cause responsible for 
the symptoms experienced by these patients [12]. For this 
reason, diagnosis of the syndrome is a process of elimina-
tion [13], made even more difficult by the fact that there 
seems to be a partial overlap in symptom manifestation 
with other similar syndromes, such as fibromyalgia [14]. 
The term Bodily Distress Syndrome (BDS) has been 
proposed as an umbrella term to capture a range of syn-
dromes which are poorly defined due to a lack of medical 
causes of the observed symptoms [15]. This suggests that 
syndromes like CFS and fibromyalgia might be different 
symptom manifestations of a disruption in the underlying 
CAS [16], more specifically the autonomic nervous sys-
tem [2] or hypothalamic-pituitary-adrenal axis [17]. This 
degraded performance of the CAS hinders the patient 
from adequately responding to unpredictable stimuli and 
stresses, resulting in symptoms such as fatigue and pain.

Viewing CFS and similar syndromes as a disruption of 
the patient’s CAS is reminiscent of taking on a biopsy-
chosocial approach, which allows for the inclusion of 
psychological and social aspects in the study of how a 
disease manifests itself in a particular patient [18]. While 
these approaches indeed complement each other well, 
especially in the context of patient-centred care, they are 
not one and the same: the CAS point of view we take on 
here also allows us to quantify the extent of the disrup-
tion in a patient’s CAS. Comparing the fractal properties 
of CFS patients’ HRV signals to those of healthy sub-
jects indeed confirmed a reduced complexity in the CFS 
patient group [19]. Additionally, CFS patients’ long-term 
activity signals (recorded over 12 days) also showed a 
decreased complexity (measured through the method of 
allometric aggregation) compared to controls, though the 
significance of this result depends on the average activity 

level of the studied group [20, 21]. Nevertheless, both 
studies identify physical activity as a possible indicator of 
the complexity of the underlying CAS of a CFS patient.

The presented applications of the CAS perspective 
might open up possibilities for new diagnostic methods 
for CFS, though robustness of the complexity metrics 
needs to be studied further before applying them to this 
end. In this study, we dive deeper into the use of activ-
ity patterns to quantify complexity, choosing allometric 
aggregation as a complexity method to allow comparison 
with Burton et  al.  [21]. One aspect which has not been 
studied is how the complexity of a physiological signal 
may change over time, and what this implies about the 
validity of using a single static complexity to character-
ise a long-term activity signal. Where previous studies 
merely focused on using complexity to compare across 
patients and controls for diagnostic purposes, we focus 
on studying the within-patient evolution of the complex-
ity over time.

While diagnosis of CFS is clearly not an easy process, 
treatment of the syndrome is certainly difficult as well 
[22], leaving most patients functionally impaired for 
several years [13]. Little is known about what triggers 
these patients to enter prolonged periods of dysfunction-
ing, and as a result anticipation and mitigation of these 
situations is difficult. By viewing the patient as a com-
plex system in which certain internal and external trig-
gers can have unexpected consequences in regards to 
patient functioning, new insights could be obtained in 
how to prevent such situations, ultimately contributing 
to the creation of novel treatment methods. To this end, 
a time-dependent complexity characterisation of activity 
patterns could be a way to quantify changes in the prop-
erties of a patient’s complex system. If personal changes 
in patient functioning can be linked to changes in com-
plexity, the temporal evolution of the complexity could 
be used to monitor and track the underlying disease 
state of a particular CFS patient. This constitutes another 
reason to further explore the potential of the allometric 
aggregation method and develop its extension over time. 
In this context, we investigate the following hypothesis: 
periods of decreased functioning for a particular patient 
are coupled with a lower complexity of the patient’s activ-
ity pattern.

The motivation for the choice to study activity pat-
terns in particular is two-fold. On the one hand, previ-
ous research has shown the potential of patient activity 
to reveal information on the mechanisms which drive the 
perpetuation of CFS [23, 24], and a complexity analysis of 
these signals seems to be meaningful [20, 21]. Secondly, 
accelerometry devices make it possible to reliably capture 
long-term continuous activity recordings from subjects 
in free-living conditions at a low cost [25].
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The need for personalised treatment
Due to the heterogeneous nature of CFS as a syndrome, 
it can be said that all CFS patients are diseased in their 
own way [12, 26]. While cognitive behavioural therapy 
has shown evidence of clinical improvement in some 
patients, it turns out ineffective in others [27]. The het-
erogeneity of the syndrome clearly calls for individu-
ally tailored treatment strategies [22], but a systematic 
approach on how to obtain these is currently lacking. 
To this end, there is a need for techniques which can 
identify patient-specific perpetuating factors [28]. 
This fits in with a more general trend within psychoso-
matic research, which constitutes a move from study-
ing between-person associations for a given diagnosis 
to identifying within-patient dynamics [29]. Note that 
the personalised treatment approach aligns well with 
the CAS point of view on CFS: each patient is governed 
by their own complex system, which is bound to react 
to triggers that are dependent on their (medical) his-
tory and specific surroundings, and which are therefore 
not necessarily shared among patients. For this reason, 
special attention will be paid to the potential of a time-
dependent complexity method to quantify these individ-
ual changes in a patient’s complex system, while limiting 
comparison across patients.

Our contributions
In short, our contributions can be summed up as follows:

•	 We describe an extension of the allometric aggrega-
tion method which can capture temporal changes in 
complexity of a time series. Its properties are demon-
strated through activity patterns which are obtained 
from CFS patients, though its application is not nec-
essarily confined to this use-case alone.

•	 Using our new method, we demonstrate the extent of 
within-patient temporal variations in the complexity 
of their activity patterns, showing that the complexity 
can be highly non-static. In several of our patients, 
the changes in complexity over time were larger 
than the difference in complexity measured between 
patient and control groups in a previous study by 
Burton et al. [21]. This raises questions about the util-
ity of using a single static complexity value inferred 
from a long-term activity signal for diagnostic pur-
poses, and forms a possible explanation for the lim-
ited power of the associations they report.1

•	 The possible link between personal variations in 
functioning and the complexity of a patient’s activ-
ity pattern is investigated. More specifically, the fol-
lowing hypothesis is explored: weeks during which a 
particular patient showed decreased functioning are 
coupled with a lower complexity of that week’s activity 
pattern. Finding no consistent relation between func-
tioning and complexity, even on a patient-by-patient 
basis, we currently cannot confirm this hypothesis.

•	 A novel data set is published, which aligns continu-
ous activity recordings obtained from multiple CFS 
patients with daily indications of symptom severity 
and other indicators of general functioning. As well 
as forming the basis for the results presented in this 
work, these 3-week measurements can be used in 
future research to explore patient-specific triggers for 
dysfunctioning and their relation to physical activity 
or derived metrics. The data and code to reproduce 
the reported complexity analysis is available at our 
Github repository [30].

Methods
Data collection
Longitudinal data was gathered from 7 CFS patients 
(6 female, 1 male) over a period of 3 weeks (20 or 21 
days), following an Ecological Momentary Assessment 
(EMA) study design [31]. The patients were recruited 
through their involvement in the CFS treatment track at 
Ghent University Hospital (Belgium). Apart from having 
received a CFS diagnosis according to the Fukuda cri-
teria [13], the only other criterion for inclusion was the 
patient’s willingness to participate in the 3-week follow-
up period. The small number of patients can be justified 
by the fact that the focus is on studying within-patient 
variations in complexity and functioning. Generalisa-
tions across patients are not the objective of the current 
research. Instead we aim to present a complete picture of 
how complexity methods can be applied to obtain a time-
dependent characterisation of patient conditions.

In order to track the activity patterns of the patients, 
the Axivity AX3 [32] device was used. This device allows 
to record raw accelerations across 3 orthogonal axes, at 
a sampling frequency of 50 Hz. Subjects were asked to 
wear the monitor on their non-dominant wrist continu-
ously for the 3-week observation period. The decision to 
go for a wrist placement (rather than hip or ankle) was 
made with ease-of-use and compliance in mind, benefit-
ing the continuity of the recorded activity signal. Manual 
inspection of the data confirmed that instances of non-
wear time were sparse and of short duration. All activ-
ity signals were therefore deemed reliable enough in 
terms of continuity. For every patient, the fine-grained 
raw accelerations were summarised into a sequence of 

1  Please note that we did not intend to reproduce their study, nor confirm 
or reject their results, which is why we did not include a large pool of CFS 
patients and had no control group. Rather, by studying the within-person 
variations in complexity, we want to shed a new light on the non-static 
nature of the complexity metric they used.
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activity counts. This was done in order to allow compari-
son of our results with previous work conducted by Bur-
ton et al. [21], as will be elaborated on in the Discussion. 
These counts can be interpreted as a score representing 
the intensity of activity during each 1-minute period of 
the recording.2 The process used to convert raw accel-
erations into activity counts can be found in the supple-
mentary material (see [30]) and is roughly based on the 
method described by Brønd et al. [33].

At the end of every day during the recording period, 
participants were asked to fill in an online questionnaire 
regarding their functioning throughout that past day. 
Reminders to fill in this survey were sent out each day at 
8:00 p.m.  via email. The survey contained questions on 
mental and physical well-being of patients, questioned 
separately for the morning, afternoon and evening. 
Patients were also asked to indicate their main activity for 
each of those day segments, and they were questioned on 
their opportunities to relax and recharge throughout the 
day. The surveys were somewhat personalised to accom-
modate each patient, but the core structure remained the 
same in each case. More information on the exact con-
tents of the surveys can be found in the supplementary 
material (see [30]). In the current study, we did not use 
any of the indicators gathered through this daily survey, 
as we wanted to focus most on studying the temporal 
variations in complexity of the activity signals. However, 
we believe that these (sub-)daily indicators of patient 
symptoms and well-being show much potential for future 
CFS research, which is why we publish the full dataset 
along with our current findings.

To get an idea of the patients’ high-level functioning 
throughout the observation period, each patient was 
followed up closely by a general-practitioner-in-train-
ing. They conducted weekly in-depth interviews with 
the patient, which were partially guided by the infor-
mation obtained through the daily survey for that past 
week. Based on these interviews, the physicians ranked 
the three weeks in the follow-up period in terms of the 
patient’s general high-level functioning during those 
weeks. This allows us to investigate whether there are 
indications of an alignment between patient functioning 
and the complexity of their activity sequence. The deci-
sion to settle on a ranking rather than assigning absolute 
levels of functioning to each week, was two-fold. On one 
hand, each general-practitioner-in-training might have 
a different interpretation of such absolute levels of func-
tioning. Secondly, a relative ranking of the weeks allows 
relative comparison of within-patient functioning over 

time. This suffices in our case, as we don’t aim to compare 
across patients. Note that in some cases, the physician 
was only able to point out the worst or best week in terms 
of functioning, resulting in a partial ranking.

We would like to point out the potential of this data set 
for future research. Information was gathered on three 
levels: (1) the recorded accelerations, corresponding to 
low-level, high-granularity information on a patient’s 
activity, (2) the surveys, capturing daily indications on 
several mental and physical features, and (3) the in-depth 
interviews, finally contextualising the previous levels 
using qualitative information. This makes for a rich data 
set, which can form the basis for further exploration of 
the link between perceived functioning and objective 
physical activity. Only a part of the information it holds 
was exploited for the research presented here.

Quantification of complexity
As a method to quantify the complexity of a time series, 
we choose allometric aggregation. One reason for this 
choice of metric is that it has been used in a past study 
to measure the complexity of activity patterns [21], show-
ing (to some extent) reduced complexity in CFS patients 
compared to healthy controls. Compared to other meth-
ods to capture long-range correlations [6], it is relatively 
straightforward to calculate the fractal dimension using 
allometric aggregation, making it a good candidate for 
extension over time.

The allometric aggregation method captures a time 
series’ similarity across timescales by identifying corre-
lations across these scales and calculating the so-called 
fractal dimension of the signal [8]. Intuitively, this means 
zooming out further and further (by aggregating the 
samples in the series) to analyse the time series statistics 
on these scales. The fractal dimension can be seen as a 
measure of the information needed to describe a system 
across different scales. When correlations across scales 
are higher, the amount of information needed to describe 
them is lower, and the fractal dimension will be lower as 
well. An uncorrelated random process will have a fractal 
dimension of 1.5, while a fully regular process will have a 
fractal dimension of 1. Healthy processes in the human 
body should operate somewhere in between these two 
extremes, with more complex processes straying fur-
ther away from the fractal dimension of an uncorrelated 
random process. For this reason, lower fractal dimen-
sions are seen as an indication of a system which exhibits 
higher complexity.

The allometric aggregation method, as first described 
by West [8], is defined as follows. As an input, the algo-
rithm takes the full time series T = {yi}i=1,...,N consisting 
of N consecutive and equidistant samples. These samples 
are aggregated by grouping them into K non-overlapping 

2  Raw accelerations are still available for further analysis and can be 
requested along with the published counts sequences.



Page 6 of 21Rabaey et al. BioPsychoSocial Medicine           (2024) 18:10 

blocks of size n, as illustrated in Eq. (1). To ease the repre-
sentation, it is assumed that T can indeed be divided into 
exactly K blocks of size n. Equation (2) shows how a new 
representation of the series, Y (n) , is obtained by taking 
the sum within each block. By including more samples in 
a block, a higher level of aggregation is considered, which 
corresponds to viewing the series on a larger timescale. 
The aggregation process is repeated for increasing block 
sizes n, with n = 1...nmax . The parameter nmax decides the 
maximum scale on which the strength of the correlations 
between the samples in the series will be evaluated.

At every scale, i.e. for every considered value of the 
aggregation level n, the mean Y (n) and variance varY (n) 
of the series are recorded on a log-log chart. If a straight 
line can be fitted through the plot, the mean and vari-
ance are related through a power-law relation, as shown 
in Eq.  (3). When this power law is present, the signal is 
said to have fractal properties (up to the maximum scale 
nmax ). The fractal dimension D can be calculated through 
the parameter b, representing the slope of the relation on 
the log-log plot, as D = 2− b/2 [34]. A practical imple-
mentation of the method we just described is provided by 
Algorithm 1 in the Appendix.

Adapted allometric aggregation (AAA)
In the allometric aggregation method (as shown in Algo-
rithm  1), one must set a value for the parameter nmax , 
which decides the range of scales over which to evalu-
ate the strength of the fractal correlations. When inves-
tigating this original method, we found that the fractal 
dimension can vary considerably depending on the 
choice of nmax . Fitting a single straight line to the log-log 
plot does not always capture how the slope of the rela-
tion changes as scales grow bigger (support for this claim 
will be provided in the Results section). Instead of run-
ning the algorithm multiple times with various choices of 
nmax in order to explore the dependence of the outcome 
on this parameter, a simple change is made to the origi-
nal method. By fitting a third-order polynomial along 
the logarithmic relation between the mean and the vari-
ance, rather than one straight line, a local slope can be 
obtained for any value of the aggregation level n through 
derivation. An order of three is chosen since it ensures 

(1)
T = {y1, ..., yn

1

; yn+1, ..., y2n

2

; ...; y(K−1)n+1, ..., yKn

K

}

(2)Y (n) = {Y
(n)
1 , ...,Y

(n)
K }, with Y

(n)
k =

n∑

i=1

y(k−1)n+i

(3)varY (n) = a · (Y
(n)

)b

enough flexibility in capturing the change of the slope 
across scales, while still being sufficiently robust.

We also advocate for calculating the required slope 
from a characteristic that is evenly spread in log-log 
space over the aggregation levels n, rather than clustered 
towards the highest range of n. Instead of incrementing n 
by 1 after every aggregation step, we therefore multiply n 
with a constant factor s > 1.

Preliminary analysis of the first version of the method 
revealed that its outcome is unreliable when the block 
size n is relatively large compared to the full length of the 
considered sequence, due to the low number of aggre-
gated blocks from which the mean and variance have to 
be estimated in that case. To address this issue, another 
change can be made: instead of considering non-over-
lapping blocks of samples (cf. Eq.  (1)), allowing some 
overlap of the blocks effectively increases the number of 
segments from which the mean and the variance are esti-
mated in a particular aggregation step.

Algorithm  2 in the Appendix presents a practical 
implementation of the adapted version of the allomet-
ric aggregation method as described in this section. 
From now on, we will refer to this algorithm as the AAA 
method (for adapted allometric aggregation).

Temporal adapted allometric aggregation (t‑AAA)
The allometric aggregation method has previously been 
used to obtain fractal dimensions for 12-day activity sig-
nals [21] and for 6-8 minute HRV signals [34]. In both 
cases, the method was applied to the physiological sig-
nals in their entirety, resulting in a single value for the 
fractal dimension representing the overall complexity of 
the signal. This makes less sense in the former application 
than in the latter, as one can imagine that the underlying 
complexity reflected by an activity signal recorded over 
multiple weeks might not be as static as this single com-
plexity value suggests.

For this reason, the AAA method as described above is 
extended to obtain an evolution of the complexity over 
time. Instead of feeding the entire long-term sequence 
into the method at once, the algorithm is applied in a 
windowed fashion, as is presented conceptually in Fig. 1. 
As the window slides across the sequence, the fractal 
dimension is calculated based only on the sequence of 
datapoints contained within that particular window. The 
resulting fractal dimensions form a new sequence reflect-
ing the evolution of the complexity over time. The subse-
quent windows may overlap, and the steps with which the 
window advances decide the granularity of the obtained 
complexity signal. The width of the window should be 
chosen large enough so that enough data is available for 
a reliable calculation of the fractal dimensions. At the 
same time, setting a wider window limits the temporal 
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resolution of the resulting time-dependent complexity 
signal.

In short, the proposed time-dependent complexity 
method extracts a two-dimensional complexity signal 
from the activity sequence: the first dimension signifies 
the changes over time, and the second captures sub-
tle changes in the self-similarity across scales. The final 
time-dependent method, which consists of consecutive 
applications of the AAA method using a sliding window, 
is implemented by Algorithm 3. From now on, we refer to 
this method by t-AAA, for temporal adapted allometric 
aggregation.

Results
In this section, we apply the adapted allometric aggrega-
tion method to the activity sequences and demonstrate 
some of its properties. First, the method is applied to 
the full 3-week activity sequence of a randomly selected 
patient, to illustrate how the fractal dimension may 
change depending on the scaling parameter n. Next, we 
compare weekly measures of the fractal dimension to the 
overall dimension obtained for the full 3-week activity 
sequences, to show that complexity is not a static feature. 
We then investigate the relation between weekly com-
plexity and global functioning for each patient. To further 

explore the variations in complexity over time, we apply 
our newly devised time-dependent method to obtain an 
evolution of the complexity for each CFS patient. Finally, 
correlations between the obtained complexity signal and 
the activity sequence from which it was extracted are 
reported for every patient, as well as some general prop-
erties of each patient’s activity pattern.

Variations in complexity across scales
First, we present some insights into the meaning of the 
time scale at which the complexity analysis is performed 
(more specifically, parameters n and nmax in the AAA 
method). To this end, we study the output of the AAA 
algorithm when the full 3-week activity sequences are 
used as an input, rather than immediately moving on to 
the time-dependent characterisation of their complex-
ity. Figure  2 shows the log-log plot which is obtained 
when the AAA method is applied to the full activity 
sequence of a patient chosen at random (with parameters 
nmin = 1 , nmax = 10× 60 and s = 1.1 ). The continuous 
line represents the third-order polynomial which is fit-
ted to the relation between the mean and the variance. 
As addressed in Eqs. (1) and (2), the algorithm aggregates 
the counts into blocks of size n, for which the mean and 
variance are obtained and compared on the log-log plot. 

Fig. 1  Time-dependent complexity. Illustration of the main idea for capturing the evolution of the complexity over time. A sliding window, 
as depicted here with a width of 3 days (72 hours), advances along the time series, in this case an activity counts sequence. Within the window, 
the AAA method is applied to obtain the fractal dimension. These dimensions form a new signal, quantifying the evolution of the complexity 
of the activity signal over time
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In Fig.  2, some of these datapoints are annotated with 
the aggregation level n for which they were obtained. For 
any such point on the plot, the local slope of the mean-
variance relation can be calculated and converted into 
the local fractal dimension for that particular aggregation 
level, as is depicted in the figure as well.

Conceptually, these values of n can be seen as the scale 
up to which we zoom out to view the time series. Since we 
know that n = 1 corresponds to one sample, which repre-
sents a 1-minute interval in the patient’s activity record-
ing, n can easily be converted to a timescale, which is also 
annotated on the plot. For example, when n = 170 , the 
samples in the activity series are aggregated up to a scale 
of around 3 hours. Intuitively, this comes down to studying 
the variations in activity exhibited by all 3-hour segments 
which are contained in the 3-week recording. When there 
is a stronger change in variations as we move from one 
aggregation level to the next, the slope obtained around 
this timescale will be steeper, resulting in a lower fractal 
dimension (which is associated with higher complexity).

From Fig. 2, we can learn that higher fractal dimensions 
are estimated for higher timescales. To show that this 
is the case for all patients, the AAA method is applied 
to the full activity sequences, again with parameters 
nmin = 1 , nmax = 10× 60 and s = 1.1 . Figure 3 shows the 
fractal dimensions which are obtained for scales ranging 
from 30 minutes to around 8 hours. While the relation 

between scale and complexity follows a similar trajectory 
for each patient, it is clear that relative comparisons of 
the fractal dimension between patients are dependent on 
the scale. For example, while patient 4’s activity pattern 
shows the highest complexity for the 30-minute scale, it 
shows the lowest out of all patients for the 8-hour scale.

Variations in complexity over time
Table  1 reports the static fractal dimensions and activ-
ity sequence properties per patient. All fractal dimen-
sions listed in the table were obtained by applying the 
AAA method with nmax = 9× 60 (corresponding to 
a maximum scale of 9 hours) and evaluating the slope 
at n = 3× 60 (corresponding to a scale of 3 hours). 
The global fractal dimension is obtained by using the 
full 3-week activity sequences as an input to the AAA 
method. The weekly values are the result of applying the 
same algorithm to the subsequences recorded from day 
1 to day 7 (week 1), day 8 to day 14 (week 2) and day 14 
until the end (week 3). Recall that the fractal dimension 
should fall between 1 and 1.5, with a dimension of 1.5 
reflecting the fractal self-similarity of an uncorrelated 
random process. Also recall that higher fractal dimen-
sions are related to lower complexity of the process which 
generated the sequences. For most patients, the fractal 
dimensions vary considerably when comparing the 3 con-
secutive weeks, showing that the complexity of a patient’s 

Fig. 2  Illustration of scaling behaviour for a randomly selected patient. Fitting a polynomial to the log-log relation between the mean and variance 
for different levels of aggregation allows to determine a slope for any value of n. This in turn can be converted to the fractal dimension 
of the activity sequence around that particular range of scales. To obtain these results, the AAA method was applied to the full 3-week activity 
sequence of a patient chosen at random, with nmin = 1 , nmax = 10× 60 and s = 1.1
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activity pattern is not static. The global fractal dimen-
sion obtained for the full sequence seems to summarise 
these weekly dimensions (as one might expect), but it can 
never do the variation across the 3 weeks justice.

To investigate the possible link between personal vari-
ations in functioning and complexity of the activity pat-
tern, we report patient-by-patient correlations of the 
weekly functioning with the weekly fractal dimension. 

Fig. 3  Variations in complexity across scales. The fractal dimension which is obtained for a range of scales is depicted per patient. To obtain 
these dimensions, the AAA method was applied to the full 3-week activity sequence for all patients (with nmin = 1 , nmax = 10× 60 and s = 1.1 ) 
and the slope of the mean-variance relation was evaluated for various aggregation scales n lying between nmin and nmax

Table 1  Various summary statistics for every patient separately. The fractal dimension on a 3-hour scale was obtained for the full 
activity sequence, and for the three weeks separately, by applying the AAA method with nmin = 1 , nmax = 9× 60 , s = 1.1 and evaluating 
for n = 3× 60 . The mean and standard deviation of the daily sum of activity counts is shown, as well as the correlation between the 
complexity signal and the activity sequences. This correlation is calculated by sampling the complexity signal (fractal dimension 
obtained using a 3-day sliding window) three times a day, and comparing these values to the sum of the activity counts contained 
within the same 3-day windows

Patient ID Daily activity counts 
mean ± std

Fractal dimension (n=3h) Correlation 3-day 
activity & fractal 
dimensionweek 1 week 2 week 3 global

1 54269 ± 11659 1.293 1.276 1.287 1.287 -0.375

2 102953 ± 13952 1.143 1.217 1.250 1.203 0.039

3 34625 ± 4475 1.219 1.199 1.234 1.222 -0.273

4 75560 ± 13698 1.235 1.259 1.263 1.254 -0.715

5 98137 ± 11050 1.197 1.234 1.283 1.242 -0.179

6 75264 ± 13270 1.227 1.314 1.223 1.251 -0.425

7 74710 ± 13024 1.184 1.181 1.182 1.180 -0.278
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Since we only have indications of high-level function-
ing on a weekly basis (i.e. the ranking of weeks done by 
physicians), we could not compare with a more fine-
grained temporal evolution of the fractal dimension that 
can be obtained using the t-AAA method. Table 2 shows 
the Spearman rank correlation between functioning 
and complexity. In particular, we compare the ranking 
of the three weeks in terms of general functioning with 
the inverted ranking of the weekly fractal dimension (as 
reported in Table  1). If the reported correlation coef-
ficient is positive, this means that better weeks in terms 
of functioning are associated with lower fractal dimen-
sions, which are indicative of higher complexity of the 
activity signal during that week. Since we do not want to 
compare across patients, we report the correlation on a 
per-patient basis, meaning each correlation coefficient 
is calculated only from 3 datapoints (one for each week 
in the recording). This means that none of the correla-
tions are significant unless there is a perfect alignment 
between both rankings, as is reflected by their p-values.

The t-AAA method, as described in the Methods and 
implemented in Algorithm  3, was applied to obtain an 
evolution of the complexity of each patient’s activity 
sequence. The solid curve in Fig. 4 depicts the evolution 
of the fractal dimension over time, for a subset of the 
CFS patients. We have chosen to focus on this particu-
lar subset of patients in the main body of the Results and 
Discussion, because their time-dependent complexity 
characterisations have different properties which illus-
trate the difficulty and heterogeneity of the problem. 
The same illustrations can be found for the remaining 4 
patients in Fig. 5 in the Appendix.

The width of the sliding window is set to 3 days (72 
hours). By choosing this width, we strike a balance 
between the method’s ability to expose higher-level 
trends (by implicitly averaging out recurring activities, 
such as sleeping, as well as diminishing the effect of 
short-term changes in daily schedule, such as weekends) 
and the desire to detect relevant shorter-term variations 
in complexity (i.e. in the range of days rather than weeks). 
To ensure reliability of the allometric aggregation pro-
cedure within these 3-day windows, the nmax parameter 
was set to a scale of 9 hours.3 As addressed previously, 
fractal dimensions can (and should) be studied on vari-
ous scales below this maximum scale setting, but for the 
current purpose of demonstrating the properties of the 
time-dependent complexity signal, we focus on a scale of 
3 hours.

Figure 4 also contains the static weekly fractal dimen-
sions as reported in Table 1, depicted by the dashed hori-
zontal lines and mentioned in the weekly labels. Finally, 
indications of the high-level functioning of the patient 
during each week are illustrated as well, to facilitate the 
initial exploration of links between functioning and com-
plexity of the activity pattern. Red, orange and green 
backgrounds respectively correspond to the worst, aver-
age and best week in terms of functioning, as reported by 
the physician who followed up the patient. In the case of 
patient 6, the physician was only able to indicate week 2 
as the best week, meaning the other two weeks are both 
labelled as average.

Relation between complexity and activity counts
An important question to ask when evaluating the 
added value of the time-dependent complexity metric 
is whether this signal encodes underlying trends which 
could not be readily extracted from the activity pattern 
itself. To investigate this, Table 1 presents some general 
properties of each patient’s activity pattern. We report 
the average daily activity counts per patient, together 
with their standard deviation. Daily activity counts are 
defined as the total sum of all activity counts within a day, 
and the average is calculated by taking the mean over all 
3 weeks in the recording period.

The table also provides an indication on the correlation 
between the activity patterns and the extracted complex-
ity signal. These correlation coefficients were calculated 
by sampling the fractal dimensions obtained using a 
3-day sliding window (as shown in Fig. 4) three times a 

Table 2  Rank correlations between weekly functioning and 
weekly activity / weekly fractal dimension. For each patient, the 
three weeks in the measurement period were ranked in the 
following way: (1) from worst functioning to best functioning (2) 
from low complexity (high fractal dimension) to high complexity 
(low fractal dimension), and (3) from low activity counts to high 
activity counts. We report the Spearman correlation between 
rankings (1) and (2) in the first column, and between rankings (1) 
and (3) in the second column, for each patient separately

Patient ID Rank corr. functioning & 
complexity

Rank corr. 
functioning & 
activity

1 1 (p < 0.001) 0.5 (p = 0.67)

2 0.866 (p = 0.33) -0.866 (p = 0.33)

3 0.5 (p = 0.67) -0.5 (p = 0.67)

4 0.5 (p = 0.67) 0.5 (p = 0.67)

5 -0.5 (p = 0.67) -1 (p < 0.001)

6 -0.866 (p = 0.33) -0.866 (p = 0.33)

7 0.5 (p = 0.67) -0.5 (p = 0.67)

3  The ratio between the maximal scale nmax and the total length of the activ-
ity sequence used as an input to the AAA method should be sufficiently 
large. If not, too little samples are obtained after aggregating up to a higher 
scale, rendering the estimation of the mean and variance of the rescaled 
time series unreliable.
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Fig. 4  Time-dependent complexity characterisation extracted for a subset of the CFS patients using the t-AAA method. Algorithm 3 was applied 
to the full activity sequence, with a window width of 3 days (72 hours), a step size of 5 minutes and the following settings of the AAA method: 
nmin = 1 , nmax = 9× 60 , s = 1.1 . The solid (blue) curve depicts the evolution of the fractal dimension on a 3-hour scale (calculated using the slope 
at n = 3× 60 ). Note that every point on the curve represents the fractal dimension of the past 3 days. The vertical lines split the recording 
period into 3 weeks, with the first week only spanning 4 days due to the 3-day window which was applied to obtain the fractal dimensions. 
For comparison with a static approach, the horizontal dashed lines indicate the weekly fractal dimensions as presented in Table 1. Every week 
is labelled with the value of the static fractal dimension corresponding to that week, as well as its ranking in terms of functioning. This ranking 
is also reflected in the background colouring of each week, with red, orange and green corresponding to the worst, average and best week, 
respectively. Similar figures can be found for the other patients in Fig. 5 in the Appendix
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day, and correlating these dimensions with the sum of the 
activity counts contained within each of those segments. 
The strength of these correlations is measured using 
Pearson’s correlation coefficient. For all patients, the cor-
relation coefficient is either negative or close to zero.

We also wondered whether weekly levels of activ-
ity were related to high-level functioning of each CFS 
patient. To this end, Table  2 reports the Spearman cor-
relation between the ranking of the three weeks in terms 
of general functioning (as constructed by the physicians 
that conducted weekly in-depth interviews with each 
patient) and the ranking in terms of activity (quantified 
by the total sum of the activity counts throughout each 
week in the recording). If the reported correlation coef-
ficient is positive, this means that better weeks in terms 
of functioning were paired with a higher total of activity 
counts. Again, for every patient, only 3 datapoints (one 
per week) could be included in our calculations, explain-
ing the high p-values.

Discussion
We will now discuss various aspects of our time-depend-
ent complexity method based on the results and figures 
presented in the previous section. First of all, we argue 
why a static complexity metric is not sufficient to charac-
terise the observed changes in the fractal dimension of an 
activity pattern over time. We also explore the following 
hypothesis: weeks in which a patient showed decreased 
functioning are coupled with a lower complexity of the 
week’s activity pattern. Further, we investigate whether 
the complexity evolution carries any trends which could 
not be readily extracted from the activity pattern itself 
and discuss which relations might arise between the 
two signals and why. Next, we study the extent of scale-
dependent variations in fractal dimension and provide 
an intuitive interpretation of the scaling behaviour. We 
then compare our method to other similar studies which 
attempt to characterise the complexity of CFS patients’ 
activity patterns. Finally, we discuss the limitations of our 
work and provide guidelines for future work.

Within‑patient variations in complexity over time
Figure 4 illustrates how the fractal dimension of an activ-
ity pattern can evolve over time. For some patients, the 
fractal dimension tends towards both the minimal and 
maximal theoretical value (respectively equal to 1.0 and 
1.5) at different points throughout the recording period. 
For others, the fractal dimension does not change as 
drastically, but still seems to evolve over time. We can 
observe a daily oscillation in the signal, which is more 
regular for some patients than for others. We refer the 
interested reader to the supplementary material (see 
[30]) for a detailed explanation of this phenomenon. In 

summary, it arises due to an alternation between sleep 
and wake time. Because we move our sliding window 
at the small resolution of 5 minutes, these day-night 
rhythms are present in the outcome of the method. Such 
momentary oscillations in the fractal dimension are not 
necessarily informative of longer-term patterns in the 
behaviour of patients, and when disregarding them we 
can still observe considerable changes in complexity 
within the range of days and weeks. From now on, when 
we talk about temporal changes in complexity, we are 
referring to these macro-trends, such as the rise and fall 
of the fractal dimension over multiple days.

While application of the allometric aggregation method 
to the full activity pattern at once will implicitly aver-
age out some more unreliable fluctuations and artefacts, 
information about the longer-term changes in complexity 
will be lost as well. Indeed, even though a weekly static 
fractal dimension seems to (partially) summarise the 
observed complexity evolution throughout the week, it 
does not do these variations justice. The time-dependent 
complexity method allows us to capture how the frac-
tal dimension evolves over a period of several days and 
weeks. At the same time, studying the general course 
of this complexity signal can still provide an idea of the 
overall complexity of the full activity pattern in the long 
term. From these observations, we learn that a temporal 
averaging of the fractal dimensions obtained in smaller 
windows (i.e. the mean of the outcome of the AAA 
method for all 3-day windows in one week of recording, 
which would be the average of the t-AAA curve in one 
week), is not the same as performing the AAA method to 
get the fractal dimension over one larger window (i.e. the 
AAA method applied to one week of recording, depicted 
in the dashed line).

Apart from illustrating the variations in complex-
ity over time, Fig. 4 also reveals the potential of a time-
dependent complexity characterisation to capture the 
personalised nature of CFS. One patient’s complexity 
signal might behave more erratically than the other (e.g., 
patient 6 vs. patient 4), reflecting different properties of 
their activity patterns and possible differences in underly-
ing disease states. Of course, it is not surprising that the 
properties of the activity patterns differ from patient to 
patient, as anyone’s daily schedules and events that might 
interrupt these are entirely different. Apart from this, 
however, patients can also experience various inhibitions 
as a result of CFS, which we can expect to leave differ-
ent marks on the activity pattern and in turn on its fractal 
properties. Both of these aspects give reason to study the 
complexity evolution within patients, rather than com-
paring across them.

Charts like the ones presented in Fig.  4 could form a 
useful point for discussion between patients and their 
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clinicians. We imagine the chart could be annotated with 
further information on patient functioning, important 
life events, and possibly other temporal signals such as 
the activity counts and their extracted properties. Even 
in cases where it proves difficult to identify a mapping 
from trends in complexity (or other temporal quantifiers 
anyone might want to investigate) to changes in patient 
functioning, the ensuing discussion could still enhance 
the mutual understanding between patient and clinician 
and provide them with a fresh outlook on the patient’s 
personal triggers that perpetuate their symptoms.

Relation between complexity and patient functioning
As outlined in the Background section, we have reason to 
believe that the evolution of the complexity of the activ-
ity pattern of a CFS patient might form a way to quantify 
changes in their underlying disease state. This forms the 
motivation to investigate whether changes in complex-
ity (here, measured in terms of fractal dimension) can be 
related to changes in high-level patient functioning. Prior 
studies [20, 21] investigated the hypothesis that CFS 
patients show signs of reduced complexity compared to 
healthy controls. We propose to move from their idea of 
comparing a single quantification of complexity between 
patients to comparing the complexity over different win-
dows in time but within a given patient. To this end, we 
formulate the following hypothesis:
H : Periods of decreased functioning in CFS patients are 

associated with a higher fractal dimension (correspond-
ing to a reduced complexity) of the corresponding activity 
pattern.

To study this hypothesis, we would ideally compare 
the time-dependent complexity signal as depicted in 
Fig.  4 to a fine-grained (i.e. in the order of days) evolu-
tion of patient functioning. Currently, we only have a 
rough ranking of each patient’s three weeks in terms of 
functioning, meaning we cannot perform such a fine-
grained comparison. Instead, we turn to the rank cor-
relations between weekly static complexity and weekly 
functioning reported in Table  2. While many of these 
correlation coefficients are positive, which is in line with 
the hypothesis, the rankings of the weeks in terms of 
functioning and complexity do not consistently align. For 
this reason, hypothesis H has to be rejected based on the 
data we currently have. Since we do not have a more fine-
grained indication of patient functioning on the daily 
level, we also refrain from speculating about whether 
sub-weekly trends in complexity (e.g. the rise and fall of 
the fractal dimension within a single week, which often 
occurs in Fig. 4) could possibly be related to changes in 
the patient’s functioning during that week.

From Table  2 it is also clear that the weekly activity 
counts mostly show a negative correlation with weekly 

functioning, though again both rankings are not consist-
ently aligned. This shows that the activity pattern in its 
simplest form is not highly indicative of patient function-
ing either.

Relation between physical activity and complexity
We can ask ourselves whether the time-dependent com-
plexity signal encodes any trends which could not readily 
be extracted from the activity pattern itself. This ques-
tion can be partially answered by studying the linear 
relation between the two signals. As illustrated by the 
last column in Table 1, the linear correlation coefficient 
obtained for samples extracted from both signals varies 
across patients. For some patients, the activity counts 
within a window are strongly correlated with the fractal 
dimension obtained for that part of the activity sequence, 
while for others this correlation is much less strong. For 
patients of the former type (for example, patient 4), the 
time-dependent complexity method might show less 
potential for revealing novel properties of the activity 
pattern, again emphasising the personalised care frame-
work in which this method should be viewed.

Whether weak or strong, the correlations which are 
not close to zero are all negative. This means that seg-
ments with a higher total of activity counts are usually 
paired with lower fractal dimensions, suggesting the 
presence of stronger fractal correlations (generated by a 
more regular process) in these sequences than for their 
less active counterparts. Indeed, if there is a higher total 
activity in the studied 3-day segment, the variation of the 
aggregated activity counts signal (i.e., when taking sub-
sequent steps in the allometric aggregation procedure) 
is expected to increase more rapidly relative to the total 
activity, compared to segments with a lower total activity. 
This results in a steeper slope on the log-log plot and a 
lower fractal dimension. Intuitively, we can interpret this 
as the fractal organisation of movement being less simi-
lar to that of a random process when it is part of a more 
physically intense activity. We hypothesise that such 
activities are, on average, executed with more purpose 
and structure than a sedentary activity which is inter-
rupted by more randomly dispersed movements.

At the same time, there are several instances where 
higher activity counts do not result in higher complexity 
(otherwise the correlation coefficients in Table  1 would 
be much closer to -1). While investigating the activity sig-
nals in detail, we realised that relatively short-term high 
peaks in activity counts can interrupt the more regular 
organisation of the activity sequence. This then seems 
to lead to a momentary increase of the fractal dimen-
sion, contradicting the general observed trend of activ-
ity sequences with higher counts being paired with lower 
fractal dimensions. Since patients indicated the type of 
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activities undertaken throughout the day in the daily sur-
veys, we were usually able to identify these momentary 
increases in activity counts as intensive sports, such as 
fitness or running. Indeed, as these relatively constrained 
movements bear less relation to the surrounding free-
range movements, the assessment of such a sequence’s 
complexity across timescales will be more similar to that 
of an uncorrelated random process (which, in theory, has 
a fractal dimension of 1.5).

In order to leverage the potential of the time-depend-
ent complexity method to reveal novel properties of 
patients’ activity patterns, insight into which aspects of 
the activity pattern directly influence the obtained fractal 
dimension is needed. It might be appropriate to remove 
or reduce large momentary peaks in activity counts4 
before calculating the fractal dimension, as their influ-
ence might distort the obtained complexity dispropor-
tionately. In this way, the obtained fractal dimensions 
would disregard extreme interruptions in activity counts, 
and the signal might be more reflective of the fractal cor-
relations present in the free-range activity and move-
ments of the patients. The part of the remaining trend 
which can be attributed to the described negative lin-
ear correlation between activity counts and the fractal 
dimension could then be removed, leaving only the part 
of the observed trend which reveals fractal properties of 
the activity signal which were not obvious from the activ-
ity pattern itself. We would expect this latter part to be 
more reflective of underlying changes in the regulation 
of the patient’s complex adaptive system, and exposing it 
could allow the identification of stronger relations with 
patient functioning and their general disease state.

Scale‑dependent variations in complexity
The goal of this section is to dig deeper into the prop-
erties of the AAA method that are related to variations 
across scales. We both aim to provide intuitive expla-
nations for some phenomena observed in the scaling 
behaviour of the activity sequences we studied, as well as 
motivate some of our choices regarding the parameters of 
the (t-)AAA method that were used to obtain the results 
reported in previous sections.

Apart from its variation across time, we have also 
shown that the fractal dimension can vary according 

to the scale parameter (represented by n, the level of 
aggregation in the allometric aggregation algorithm). Of 
course, as the complexity metric is designed to capture 
the fractal correlations across scales, the slope obtained 
around a particular value of the scaling parameter n will 
partially depend on the strength of the correlations on 
all scales, from nmin to nmax . It is the overall coherence 
of the variations within various scales, ranging from a 
level of minutes to a level of hours, that decides whether 
the time series shows any sense of self-similarity and to 
what extent. However, at the same time, the lower range 
of scales may still exhibit a different strength of frac-
tal correlations than the higher range of scales, which is 
illustrated in Fig. 2: the relation between mean and vari-
ance is better captured by a polynomial than by a single 
straight line. In this case, we see that lower scales exhibit 
steeper slopes, corresponding to lower fractal dimen-
sions. The discussion that follows links the inner work-
ings of the allometric aggregation method to an intuitive 
explanation for this observation.

Imagine dealing with a time series generated by a ran-
dom uncorrelated process, characterised by a certain 
mean and variance. When aggregating the samples into 
blocks of size n, we essentially take the sum of n inde-
pendent and identically distributed variables with identi-
cal mean and variance. Basic statistics allow obtaining the 
mean and variance of the resulting aggregated time series 
as the original mean and variance both multiplied by n, 
respectively. On a log-log scale, this results in a slope 
of 1 (and a fractal dimension of 1.5), since both mean 
and variance increase with the same amount. When we 
are dealing with a process that exhibits some regularity, 
consecutively generated samples will not be independ-
ent anymore. As we aggregate the series into blocks of 
n samples, the mean will still increase with factor n, but 
now the variance will increase with an additional amount 
proportional to the covariance between the consecu-
tive samples (reflecting the strength of the dependence 
between the samples generated by the process). On a log-
log scale, this results in a slope that is steeper than 1. This 
translates into a fractal dimension lower than 1.5, reflect-
ing that there is some regularity in the signal, as is indeed 
the case for the activity patterns we present here. Since 
the slope in the lower scaling ranges is steeper than in the 
higher ranges, we can state that the signal shows more 
regularity for these lower scales. Our intuition would 
indeed confirm that there should be more regularity in 
movements when these are compared from one minute 
to the next, as particular activities often span a time-
frame larger than a couple of minutes.

At higher scales, the slope becomes lower, resulting in 
a higher fractal dimension. Suppose, for example, that we 
are considering 3-hour scales. This effectively means that 

4  We should be careful to only remove such peaks if they can be certainly 
linked to a specific high-intensity activity purposefully undertaken by the 
subject. This information can potentially be extracted from daily surveys 
filled in by patients or by markers left in the activity data (for example, by 
requesting patients to clap 5 times before starting a sporting activity). Fur-
thermore, we should not disregard these events entirely, even if they are 
not included in the calculation of the complexity signal. They should still be 
kept in mind while studying their repercussions in terms of symptoms and 
general functioning in the days that follow, and how those aspects might be 
reflected in the complexity signal.
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we are comparing consecutive 3-hour segments and cal-
culating their variation in terms of total aggregated activ-
ity counts enclosed in these segments. We can expect that 
the properties of this time series correspond more to those 
of a random signal than was the case for lower scales, as 
we may be comparing across activities less related to one 
another. However, the fact that the slope of the mean-vari-
ance relation still remains higher than one shows that some 
regularity is still present in the signal at this scale. There is 
usually still some purpose behind a person moving from 
activity to activity, explaining why activity patterns show a 
degree of self-similarity even on higher timescales.

The question that follows is which range of scales is 
more important when analysing the complexity of our 
activity patterns. We can argue that scales of a different 
order of magnitude each capture a different notion of 
complexity. The way the strength of the mean-variance 
relation changes across scales as we move to higher 
ranges also contains information about the complex-
ity of a time series. When we discard information on 
the self-similarity of the signal when viewing it on lower 
scales, we discard information about how the subject’s 
movement is hindered when operating within a specific 
activity. On the other hand, when discarding the fractal 
dimension obtained for higher scales, we discard indica-
tions of the activity pattern’s self-similarity across higher-
level tasks and daily schedules. In the current work, we 
have made the decision to focus on the fractal dimension 
obtained for higher scales ( ∼ 3 hours) when present-
ing our time-dependent complexity characterisation, in 
order to simplify the presentation and analysis of these 
results. However, future work should focus on develop-
ing a temporal complexity representation which also 
contains information about the signal’s scale-dependent 
behaviour, without disregarding the fractal properties in 
the lower range of scales ( ∼ minutes).

Apart from taking into account these considerations 
on the changes in fractal dimension across scales, there 
is also a trade-off to consider when choosing the width of 
the window used to obtain the time-dependent complex-
ity signal. The slope of the mean-variance relation can only 
be calculated reliably if enough segments are created in 
the higher-level aggregation steps. This induces a limita-
tion on the width of the window which selects the part of 
the activity series to feed into the algorithm. For example, 
when we aim to study the fractal correlations up to a scale 
of 3 hours, the window should not become much smaller 
than 24 hours. While a larger window allows for more reli-
able estimates, it also results in a slower manifestation of 
the changes in the activity series’ properties. Intuitively, 
it is not always clear which choice of window and scale is 
most appropriate in light of this trade-off. From experi-
ence, we recommend the window size to be at least 8 times 

as large as the maximum scale ( nmax ) one desires to study. 
The step size, which we fixed to 5 minutes, can be chosen 
freely according to the desired granularity of the complex-
ity signal, although it will impact the execution time.

The 3-day sliding window we chose to apply is suffi-
ciently large in relation to the 3-hour scale we focus on, 
which would require a 24-hour window at least. Going for 
a larger window increases the reliability of the estimated 
means and variances in the AAA algorithm, reducing 
the amount of sharp momentary peaks in the complexity 
signal which would make it harder to extract and inter-
pret a global trend in complexity. A larger window also 
decreases the magnitude of the daily oscillations which 
arise due to an alternation between sleep and wake time, 
a phenomenon we have pointed out briefly when discuss-
ing the within-patient variations in complexity. Further-
more, we believe this window size better reflects the level 
at which we desire to observe changes in complexity for 
these patients. We do not want momentary changes in the 
behaviour of the patients, which may not bear a relation 
to changes in the manifestation of their illness, to have 
an immediate impact on the complexity characterisation. 
Rather, we want to observe slower but more permanent 
changes in complexity, which might still be triggered by a 
singular event in the patient’s timeline, but which bear a 
more long-lasting impact. We believe that a window of 3 
days is long enough to average out the effect of irrelevant 
momentary changes, while the resolution of the informa-
tion contained in the resulting complexity signal is still 
high enough compared to its full length of 3 weeks.

Comparison with other studies
We identified only two other studies which investigated 
the complexity of CFS patients’ activity patterns in par-
ticular. Ohashi et al. [20] used two techniques, detrended 
fluctuation analysis (DFA) and wavelet transform modu-
lus maxima (WTMM), to estimate the fractal scaling 
exponent of 14-day physical activity time series. They 
reported that CFS patients’ activity patterns showed 
indications of reduced complexity compared to healthy 
controls. Burton et  al.  [21] reported similar observa-
tions, using the allometric aggregation method (cf. Algo-
rithm  1) to estimate the fractal dimension of 12-day 
activity patterns. What both studies have in common, 
is the fact that they characterised the fractal properties 
of the 2-week long time series using a single static com-
plexity value per patient, as opposed to the time-depend-
ent characterisation presented here. Both studies were 
only able to significantly discriminate very inactive CFS 
patients from healthy controls based on the fractal prop-
erties of their activity time series.

As motivated previously, we decided to use the same 
metric as Burton et al. [21] to allow for a closer comparison. 
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Furthermore, we followed Burton et  al.  [21] in convert-
ing the raw acceleration recordings to activity counts. Our 
observations suggest that their results should be inter-
preted with caution. Table  1 illustrates how the fractal 
dimensions obtained for the first, second and third week 
of the recording are relatively far apart for some patients. 
Some variations are around the same order of magnitude 
as the differences reported by Burton et  al.  [21] between 
the average fractal dimension obtained for their control 
group (1.14), their active CFS patient group (1.16) and their 
pervasively inactive CFS patient group5 (1.21) (though the 
scale for which these dimensions were obtained is unclear). 
This indicates a lack of robustness of the static allometric 
aggregation method, especially for its application in a diag-
nostic context: the fractal dimension of a week-long activ-
ity pattern might classify a subject to fall within the CFS 
patient group one week, but not the next.

The observed temporal variations in complexity might 
partially explain why little statistical difference was found 
between the fractal dimension of active CFS patients and 
controls. As opposed to the method applied by Burton 
et al. [21], a time-dependent complexity characterisation 
of the activity pattern over multiple weeks does not dis-
card information on the variations in fractal dimension. 
While identifying new methods for diagnosis of CFS 
is not the focus of the current work, we can argue that 
retaining this information might lead to a more robust 
complexity-based diagnostic method.

We can also question whether comparison between 
groups of patients and controls, based on fractal dimen-
sions obtained for a particular scale, is warranted. Bur-
ton et al.  [21] did not provide a motivation for the scale 
upon which they evaluated the fractal dimension, and it is 
unclear whether multiple scales were tried and how their 
results would differ in these cases. In any case, Fig. 3 illus-
trates how comparisons between patients can differ when 
the fractal correlation strength in different scaling ranges 
is explored. The same might be the case if we compared 
these patients with healthy controls: a patient might have 
a lower fractal dimension on a scale of 30 minutes but a 
higher one on a scale of 3 hours. It is certainly necessary 
to stick to one particular setting for the scale parameter to 
ensure comparability of fractal dimensions (as was done 
by Burton et  al.  [21]), but apart from this it would also 
be advised to explore various scale settings and report 
whether this impacts the significance of the results.

Both Ohashi et  al.  [20] and Burton et  al.  [21] only 
reported significant differences for so-called pervasively 
inactive CFS patients when comparing them to a group of 

healthy controls. Patients who are relatively active despite 
their CFS diagnosis could not easily be identified. The 
activity patterns for the inactive patient group are likely 
very static (showing permanently low activity counts), 
and in this case it makes sense that the fractal dimension 
obtained for such activity patterns would be relatively 
static as well, allowing them to be discriminated from 
the group of healthy subjects. Additionally, in the case 
of these pervasively inactive patients, we see that Bur-
ton et al.  [21] were initially able to identify a significant 
difference in mean activity counts between this group of 
CFS patients and their matched healthy counterparts. It 
begs the question whether a complexity-based separation 
of these groups is even needed, if the activity pattern in 
itself already suffices for this purpose. Though we can-
not directly compare the patients included in our trial 
to theirs, based on the interviews and objective activity 
counts, we would not classify any of the patients included 
in our pilot trial as pervasively inactive. It is exactly for 
this rather active group of patients that we expect an evo-
lution of the complexity to be more informative than a 
single static complexity metric.

Limitations and future work
We have proposed an extension of the allometric aggre-
gation method to capture the evolution of complexity 
over time. While we applied it to activity sequences in the 
context of CFS patients, the t-AAA method is sufficiently 
general to be applied to any time signal obtained in- or 
outside a clinical context. Future work could explore its 
potential to extract temporal variations in complexity 
from other time series. For example, as fractal properties 
of HRV signals have been shown to contain information 
which can be linked to heart failure [35], we can expect 
quantification of variations in the complexity of the HRV 
signal to be useful in contexts outside of CFS as well.

Apart from showing that the fractal dimension evolves 
over time, we also showed that it varies across scales: the 
fractal properties are different when evaluated around 
scales at the level of minutes vs. hours. We made a 
choice to focus on the evolution of the complexity on a 
3-hour scale, but the fractal behaviour of the activity pat-
tern in the lower scale range is different, and its variation 
over time likely contains complementary information. In 
the future, we should try to find a representation of the 
complexity and its variation over time which takes this 
scale-dependent behaviour into account as well.

Furthermore, additional insight is needed into the 
relationship between certain properties of the activ-
ity pattern and the influence these have on the fractal 
dimension which is derived from it. In our compari-
son of complexity with activity, we discussed the 
possible distortion of complexity as a result of large 

5  CFS patients were categorised as pervasively inactive if their daily activ-
ity counts were smaller than the average daily counts (based on the entire 
group of CFS patients) for 90% of all days in the recording period.
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momentary peaks in activity counts (which might 
occur when a patient engages in heavy exercise). We 
also described the observed overall negative linear cor-
relation between activity counts and the fractal dimen-
sion. Given these observations, we propose that future 
research should jointly model complexity and activity 
to account for the relation between both.

Seeing as we were unable to confirm our hypoth-
esis that periods of decreased functioning are related 
to a decrease in complexity of the CFS patient’s activ-
ity pattern, it seems unlikely that the proposed com-
plexity metric (applied to physiological outputs such 
as activity) can adequately quantify a patient’s state 
of well-being. We foresee that future research should 
investigate the potential of a multi-modal approach, 
where various metrics that can be continuously tracked 
(e.g. activity counts and derived features, possibly 
including complexity) are combined into one monitor-
ing system. Instead of focusing on a predefined met-
ric, such as the method of allometric aggregation, we 
should look into machine learning-based methods to 
obtain a personalised temporal representation of each 
patient, which can serve as a quantification of the 
underlying properties of the patient’s CAS.

Finally, it would be useful to repeat the conducted 
analysis for a larger and more diverse group of patients, 
e.g. including patients who have only recently received 
a diagnosis and have not yet developed many coping 
mechanisms. The purpose of this extension would not be 
to compare results across patients, but rather to have a 
broader view on the extent of within-patient variations in 
complexity and functioning. We pose that such a follow-
up study should collect more fine-grained (i.e. on the daily 
level) indications of general functioning. This would allow 
a more direct comparison with any fine-grained temporal 
quantifiers derived from the activity pattern, facilitating 
the development of multi-modal temporal representa-
tions that are predictive of the personal functioning.

Conclusions
Past studies have shed light on the potential of complex-
ity metrics (extracted from physiological time series like 
activity patterns and HRV measurements) as a quantifica-
tion of the underlying disease state of CFS patients, though 
much additional research is needed into the robustness of 
such methods. In our work, we focus on investigating the 
temporal changes in complexity, which the classical static 
methods cannot capture. To this end, we have presented 
a method which can quantify the variations in fractal 
dimension of a physiological signal over time, by extend-
ing the method of allometric aggregation. We applied our 
new time-dependent method to characterise the fractal 

correlations of physical activity patterns and compared 
the outcome with the original static approach. This illus-
trated the extent of within-patient variations in complex-
ity, which were significant and justify the need for such a 
time-dependent characterisation. Given the time-varying 
nature of complexity that is revealed using our method, 
we are forced to reconsider the utility of a previous study 
by Burton et al. [21] that characterises long-term activity 
signals using a single static complexity value. Although 
the authors did not explicitly state the fractal dimension 
alone could be a diagnostic tool (due to the non-signifi-
cant difference between patients and controls in terms 
of fractal dimension) they did suggest its potential value 
as an objective CFS indicator. Based on the results of 
our within-patient experiments, we argue this is highly 
unlikely.

Apart from presenting a way to capture variations in 
complexity over time, we also explored the possible link 
between personal variations in functioning and the com-
plexity of a patient’s activity pattern. We tested this by 
comparing each patient’s high-level weekly indications of 
patient functioning with their weekly measures of com-
plexity. Based on this, we could not confirm our hypothe-
sis, which stated that weeks during which a patient showed 
decreased functioning were expected to be coupled with 
a lower complexity of the activity pattern. For this rea-
son, we conclude that complexity alone cannot sufficiently 
capture latent changes in functioning. Instead, we should 
move towards building systems that jointly model multi-
ple observable features and their extracted metrics (among 
which the fractal dimension could be one of many), in 
order to accurately track patient well-being using objective 
continuous measurements. To accommodate future work 
on this front, we have published our novel dataset which 
aligns continuous activity recordings (3 weeks) from 7 CFS 
patients with daily indications of symptom severity, per-
ceived physical activity, stress levels, etc. The data, which is 
freely available at our Github repository [30], can be used 
to explore patient-specific triggers for dysfunctioning and 
their relation to physical activity or derived metrics.

While we do not show a conclusive use for the time-
dependent complexity metric in the CFS use-case, the 
method itself can be readily applied in other settings, 
be it other physiological signals (e.g. heart-rate vari-
ability), in the context of other clinical disorders that 
could benefit from the complex adaptive systems way of 
thinking, or even outside of the medical domain. To the 
best of our knowledge, the current work is the first to 
present a method which can characterise the evolution 
of the complexity over time, rather than representing 
the complexity of an ever-changing physiological signal 
by one single, static complexity value.
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Appendix
In the Methods section, we introduced three algorithms 
that aim to capture the complexity of a time series, either 
through a static fractal dimension or dynamically over 
time. Algorithm  1 implements the original allometric 
aggregation algorithm as defined by West [8]. We intro-
duced a couple of changes in the original algorithm, to 
address certain issues with its practical application and 
to allow it to capture the fractal dimension across vari-
ous scales. Our implementation of the adapted version 
of the allometric aggregation method (referred to as the 
AAA method) is presented in Algorithm  2, which also 
points out where these adaptations were made. Finally, 
Algorithm  3 implements the time-dependent complex-
ity method, which applies the AAA method to obtain 

the fractal dimension within consecutive windows. We 
publish our Python implementation of these algorithms 
in the supplementary material (see [30]). There, we also 
include a comprehensive explanation of the algorithm 
parameters, and lay out the changes we made to the orig-
inal allometric aggregation method in depth. These in-
depth explanations are meant for anyone who would like 
to reuse our method or reproduce our results.

Figure  5 presents the complexity evolution for 
patients 2, 3, 5 and 7 (i.e., those not shown in Fig.  4), 
together with their static fractal dimensions for each 
week and the ranking of their functioning. These fig-
ures are merely presented to the reader as additional 
examples of the application of our method, since we did 
not discuss these patients’ use-cases in depth.

Algorithm 1 The original allometric aggregation algorithm as defined 
by West [8]

Algorithm 2 Adapted allometric aggregation (AAA) method to calculate 
the fractal dimension of a time series. The comments in the pseudocode 
draw attention to the changes which were made compared 
to Algorithm 1

Algorithm 3 The time-dependent adapted allometric aggregation 
(t-AAA) method which extracts a list of fractal dimensions, 
simultaneously over time and across various scales. A time window slides 
across the activity sequence and calculates the fractal dimension (for 
various scales) for the activity segment contained within that particular 
window. The algorithm makes use of the adapted allometric aggregation 
method (indicated by AAA​) as defined in Algorithm 2
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Fig. 5  Time-dependent complexity characterisation extracted for the remainder of the CFS patients, using the t-AAA method. See the caption of Fig. 4 
for an extended description
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